Download e-book for kindle: Algebra fur Einsteiger: Von der Gleichungsauflosung zur by Bewersdorff J.

By Bewersdorff J.

ISBN-10: 3834807761

ISBN-13: 9783834807762

Show description

Read Online or Download Algebra fur Einsteiger: Von der Gleichungsauflosung zur Galois-Theorie(s) PDF

Similar algebra books

Read e-book online Représentations linéaires des groupes finis PDF

Advent du livre par l’auteur :

    Ce livre est shapeé de trois events, de niveaux et de buts assez différents :

    La première partie a été écrite à l’usage des chimistes théoriciens. Elle disclose l. a. correspondance, due à Frobenius, entre représentations linéaires et caractères. Il s’agit de résultats fondamentaux, d’usage consistent aussi bien en mathématique qu’en chimie quantique, ou en body. J’ai essayé d’en donner des démonstrations aussi élémentaires que attainable, n’utilisant que l. a. définition même d’un groupe et les rudiments de l’algèbre linéaire. Les exemples (§ 5) ont été choisis parmi ceux qui sont utiles aux chimistes.

    La deuxième partie est un cours donné en 1966 aux élèves de seconde année de l’École Normale. Elle complète l. a. première sur les issues suivants :
a) Degrés des représentations et propriétés d’intégralité des caractères (§ 6).
b) Représentations induites, théorèmes d’Artin et de Brauer, et applications (§§ 7 à 11).
c) Questions de rationalité (§§ 12 et 13).
    Les moyens utilisés sont ceux de l’algèbre linéaire (en un sens plus huge que pour los angeles première partie) : algèbres de groupes, modules, produits tensoriels non commutatifs, algèbres semi-simples.

    La troisième partie est une creation à l. a. théorie de Brauer : passage de l. a. caractéristique zero à l. a. caractéristique p (et inversement). J’ai utilisé librement le langage des catégories abéliennes (modules projectifs, groupes de Grothendieck), bien adapté à ce style de question.
    Les principaux résultats sont :
a) Le fait que l’homomorphisme de décomposition est surjectif : toute représentation irréductible de caractéristique p peut être relevée « virtuellement » (i. e. dans un groupe de Grothendieck convenable) en caractéristique 0.
b) Le théorème de Fong-Swan permettant de supprimer le mot « virtuellement » de l’énoncé précédent, pourvu que le groupe considéré soit
p-résoluble.
    J’ai également donné quelques purposes aux représentations d’Artin.

===== desk des matières =====

Introduction

I. Représentations et caractères

    § 1. Généralités sur les représentations linéaires
        1. 1. Définitions
        1. 2. Premiers exemples
        1. three. Sous-représentations
        1. four. Représentations irréductibles
        1. five. Produit tensoriel de deux représentations

    § 2. Théorie des caractères
        2. 1. Le caractère d’une représentation
        2. 2. Le lemme de Schur; premières applications
        2. three. Les kin d’orthogonalité des caractères
        2. four. Décomposition de l. a. représentation régulière
        2. five. Nombre des représentations irréductibles
        2. 6. los angeles décomposition canonique d’une représentation
        2. 7. Décomposition explicite d’une représentation

    § 3. Sous-groupes, produits, représentations induites
        3. 1. Sous-groupes commutatifs
        3. 2. Produit de deux groupes
        3. three. Représentations induites

    § 4. Extension aux groupes compacts
        4. 1. Groupes compacts
        4. 2. Mesure invariante sur un groupe compact
        4. three. Représentations linéaires des groupes compacts

    § 5. Exemples
        5. 1. Le groupe cyclique C_n
        5. 2. Le groupe C_∞
        5. three. Le groupe diédral D_n
        5. four. Le groupe D_nh
        5. five. Le groupe D_∞
        5. 6. Le groupe D_∞h
        5. 7. Le groupe alterné A₄
        5. eight. Le groupe symétrique S₄
        5. nine. Le groupe du cube

    Bibliographie (Partie I)

II. Représentations en caractéristique zéro

    § 6. L’algèbre du groupe
        6. 1. Représentations et modules
        6. 2. Décomposition de C[G]
        6. three. Le centre de C[G]
        6. four. Rappels sur les entiers
        6. five. Propriétés d’intégralité des caractères. Applications

    § 7. Représentations induites; critère de Mackey
        7. 1. Rappels
        7. 2. Caractère d’une représentation induite; formule de réciprocité
        7. three. restrict aux sous-groupes
        7. four. Critère d’irréductibilité de Mackey

    § 8. Exemples de représentations induites
        8. 1. Sous-groupes distingués; functions aux degrés des représentations irréductibles
        8. 2. Produits semi-directs par un groupe commutatif
        8. three. Rappels sur certaines sessions de groupes finis
        8. four. Théorème de Sylow
        8. five. Représentations linéaires des groupes hyper-résolubles

    § 9. Théorème d’Artin
        9. 1. L’anneau R(G)
        9. 2. Énoncé du théorème d’Artin
        9. three. Première démonstration
        9. four. Deuxième démonstration de i) ⇒ ii)

    § 10. Théorème de Brauer
        10. 1. Éléments p-adiques; sous-groupes p-élémentaires
        10. 2. Caractères induits provenant des sous-groupes p-élémentaires
        10. three. development de caractères
        10. four. Démonstration des théorèmes 18 et 18'
        10. five. Théorème de Brauer

    § 11. purposes du théorème de Brauer
        11. 1. Caractérisations des caractères
        11. 2. Un théorème de Frobenius
        11. three. Réciproque du théorème de Brauer
        11. four. Spectre de A ⨂ R(G)

    § 12. Questions de rationalité
        12. 1. Les anneaux de R_K(G) et \\bar{R}_K(G)
        12. 2. Indices de Schur
        12. three. Réalisabilité sur les corps cyclotomiques
        12. four. Rang du groupe R_K(G)
        12. five. Généralisation du théorème d’Artin
        12. 6. Généralisation du théorème de Brauer
        12. 7. Démonstration du théorème 28

    § 13. Questions de rationalité : exemples
        13. 1. Le cas du corps des nombres rationnels
        13. 2. Le cas du corps des nombres réels

    Bibliographie (Partie II)

III. creation à los angeles théorie de Brauer

    § 14. Les groupes R_K(G), R_k(G) et P_k(G)
        14. 1. Les anneaux R_K(G) et R_k(G)
        14. 2. Les groupes P_k(G) et P_A(G)
        14. three. constitution de P_k(G)
        14. four. constitution de P_A(G)
        14. five. Dualités
        14. 6. Extension des scalaires

    § 15. Le triangle cde
        15. 1. Définition de c : P_k(G) → R_k(G)
        15. 2. Définition de d : R_K(G) → R_k(G)
        15. three. Définition de e : P_k(G) → R_K(G)
        15. four. Premières propriétés du triangle cde
        15. five. Exemple : le cas des p'-groupes
        15. 6. Exemple : le cas des p-groupes
        15. 7. Exemple : produits de p'-groupes et de p-groupes

    § 16. Théorèmes
        16. 1. Propriétés du triangle cde
        16. 2. Caractérisation de l’image de e
        16. three. Caractérisation des A[G]-modules projectifs par leur caractère
        16. four. Exemples de A[G]-modules projectifs : représentations irréductibles de défaut nul

    § 17. Démonstrations
        17. 1. Changement de groupe
        17. 2. Le théorème de Brauer dans le cas modulaire
        17. three. Démonstration du théorème 33
        17. four. Démonstration du théorème 35
        17. five. Démonstration du théorème 37
        17. 6. Démonstration du théorème 38

    § 18. Caractères modulaires
        18. 1. Le caractère modulaire d’une représentation
        18. 2. Indépendance des caractères modulaires
        18. three. Traductions
        18. four. Une part de d
        18. five. Exemple : caractères modulaires du groupe symétrique S₄
        18. 6. Exemple : caractères modulaires du groupe alterné A₄

    § 19. software aux représentations d’Artin
        19. 1. Représentations d’Artin et de Swan
        19. 2. Rationalité des représentations d’Artin et de Swan
        19. three. Un invariant

    Annexe

    Bibliographie (Partie III)

Index des notations
Index terminologique

Additional resources for Algebra fur Einsteiger: Von der Gleichungsauflosung zur Galois-Theorie(s)

Example text

Für die eingangs gestellte Aufgabe erhält man die kubische Resolvente z 3 − 3z 2 − 36 z − 342 = 0 , die sich mit Hilfe der Transformation z = y + 1 in eine reduzierte kubische Gleichung überführen lässt: y 3 − 39 y − 380 = 0 Biquadratische Gleichungen 27 Auf Basis der Resolventen-Lösung z = 1 + 3 190 + 3 3767 + 3 190 − 3 3767 lassen sich schließlich Türme von Wurzelausdrücken finden, welche die ursprüngliche biquadratische Gleichung lösen. Spätestens nun bestätigt sich das, was schon in der Einführung erläutert wurde, nämlich dass die hier hergeleiteten algebraischen Lösungsformeln völlig unzweckmäßig sind, wenn es nur darum geht, numerische Werte zu berechnen.

Alle diese Eigenschaften zusammen geben uns die Gewissheit, dass wir mit den Paaren (a, b) in der Form (a, b) = (a, 0) + (b, 0)·(0, 1) = a + bi mit i2 = –1 tatsächlich solche mathematische Objekte definiert haben, die sich wunschgemäß wie a + b − 1 verhalten. Die somit erfolgte Erweiterung des Zahlbereichs der reellen Zahlen erfolgte dabei bewusst gänzlich ohne Verwendung des a priori überhaupt nicht definierten Ausdrucks −1 , dessen Verwendung zudem nicht immer ganz unproblematisch ist, da er leicht zu fehlerhaften Berechnungen wie zum Beispiel − 1 − 1 = ( −1)( −1) = 1 = 1 verleitet.

Mit Algebra hat eine solche Lösung auf der Basis von trigonometrischen Funktionen eigentlich nichts zu tun. Allerdings ist die Fragestellung, nämlich die Lösung einer kubischen Gleichung, zweifellos ein fundamentales algebraisches Problem. Darüber hinaus ist der beschriebene Lösungsweg des casus irreducibilis hervorragend dazu geeignet, den praktischen Umgang mit komplexen Zahlen zu erlernen. Erstmals gefunden wurden die gerade beschriebenen Formeln von François Viète (1540-1603) im Jahr 1591; die posthume Veröffentlichung erfolgte 1615.

Download PDF sample

Algebra fur Einsteiger: Von der Gleichungsauflosung zur Galois-Theorie(s) by Bewersdorff J.


by Jeff
4.1

Rated 4.96 of 5 – based on 7 votes